

FEATURES

1. Wide input voltage range: 9-60VDC

2. Output voltage range: 0-60VDC

3. Efficiency up to 98%

4. Built-in output reverse current protection Oring-fet

 Input under-voltage protection, input over-voltage protection, output over-voltage protection, output over-current & short-circuit protection, over-temperature protection

Operating temperature range: -40°C to +100°C (case temperature)

7. 1/8 brick international standard pin configuration

8. Application: Communication, battery management, DC-DC distributed power supply, robot

3 years Warranty

Selection Guide

	Input			Output		
Part No.	Nominal (Range) (VDC)	Max. (VDC)	Current Limit (A) max.	Nominal (Range) (VDC)	Current (A) max.	
QAB4836EB-20A-S(F)G	9-60	60	23	0-60	20	
QAB4836EB-20A-C(F)G	9-60	60	23	0-60	20	

Note:

① The input voltage must not exceed this value; otherwise, it may cause permanent and irrecoverable damage.

② When Vin > Vo, the maximum output current cannot exceed 20A; when Vin ≤ Vo, the maximum input current cannot exceed 23A.

③ The 5 and 7 output terminals of QAB4836EB-20A-SG are for the Senso- and Sonso+ versions; the 5 and 7 output terminals of QAB4836EB-20A-CG are for the lset and Imon versions.

(4) (F) are packaged with heat sinks.

Typical operating condition efficiency

Input		Output		Efficiency(%)
Voltage(VDC)	Voltage(VDC)	Current(A)	Output Power(W)Max.	Тур.
	48	5	240	92.5
	48	2.5	120	93.5
12	24	10	240	94.5
12	24	5	120	96.0
	12	20	240	94.0
	12	10	120	96.0
	48	10	480	96.5
	48	5	240	96.5
24	24	20	480	97.0
24	24	10	240	97.5
	12	20	240	94
	12	10	120	95
	48	20	960	98.0
	48	10	480	98.0
40	24	20	480	95.5
48	24	10	240	95.5
	12	20	240	93.5
	12	10	120	93.5
60	60	20	1200	98.0
60	60	10	600	98.0

Note: The corresponding 100% lo values for each operating condition are shown in the power reduction curve in Figure 1.

Input Specifications

Item	Operating Conditions	Min.	Тур.	Max.	Unit
	Vin=12/24/36/48V,Vout=12V,lo=0A		65		
Input Current (no-load)	Vin=12/24/36/48V,Vout=24V,lo=0A		75		
	Vin=12/24/36/48V,Vout=48V,lo=0A		135		mA
Reflected ripple current	Vin=48V,Vout=24V,lo=20A		150		
Surge Voltage (1sec. max.)	lsec.max.			80	
Start-up Voltage				9	
Input Under-voltage Protection		6			VDC
Input overvoltage protection	self-recovery		70		
Input Filter		Pi filter			
Hot Plug					
Input Reverse Polarity Protection		Unavailable			
Input current limit	input voltage range			23	Α
	Module on	Ctrl pin connected to -Vin or low level (0-0.8VDC)			
Ctrl	Module off	Ctrl open circuit or connected to TTL high level (1.8-5.5VDC)			vel (1.8-
	Input current during shutdown		2		mA

Output Specifications

Item	Operating Conditions	Min.	Тур.	Max.	Unit	
W. B	3.3V - 60V output, 5% to 100% max	±100	±100mV±2%*Vout-2%*Vout*lout/lomax			
Voltage Accuracy① 3.3V - 60V output, 0% to 5% max		±100r	nV±3%*Vout -	2%*Vout*lout,	/lomax	
Output load regulation rate	Nominal input voltage, 5% to 100% max		±2%*Vout	*lout/lomax		
Transient response deviation	Vin = 28V, Vout = 12V, 25% load step change, 0.1A/us		600		mV	
Transient recovery time	Vin = 28V, Vout = 12V, 25% load step change, 0.1A/us		400		uS	
Temperature Coefficient	Operating temperature: -40°C to 100°C		±0.02		%/°C	
	20MHz bandwidth, Vin = 36V, Vout = 12V, lo = 20A		50			
Ripple & Noise②	20MHz bandwidth, Vin = 36V, Vout = 24V, lo = 20A		300		mVp-p	
	20MHz bandwidth, Vin = 36V, Vout = 48V, lo = 15A		200			
Over-temperature protection	The maximum temperature on the product surface		105		°C	
Output overvoltage protection	Input voltage range, output power range, lockout		65		VDC	
Output current limit	Input voltage range, output voltage range		22		А	
Output overcurrent & short circuit protection	Input voltage range		Constan	t current		
	Iset pin setting			precautions for adjusting the se refer to the manual.		
Current regulation(lset)	Iset pin floating		2.5		VDC	
	Output current adjustment range	0		20	Α	
	Vset pin setting	Please refer to the output voltage Vset adjustment designand precautions for details.			stment design	
Voltage regulation(Vset)	Vset pin floating		2.5			
	Output voltage adjustment range	0		60	VDC	
Remote	Sense pin setting	Please refer t	Please refer to the adjustment design and precautions of Sense for details.			
Compensation(Sense)	Sense compensation voltage range			105	%Vo	

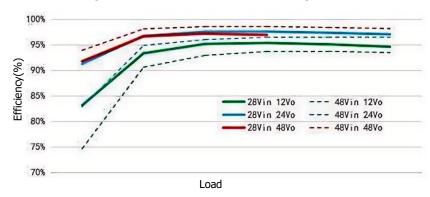
General Specifications

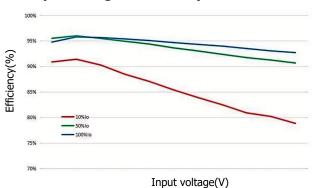
Item	Operating Conditions	Min.	Тур.	Max.	Unit	
Isolation voltage	Input/Output - Housing, test duration 1 minute, leakage current less than 1mA	1500			VDC	
Operating temperature ④		-40		+100	°C	
Storage temperature		-55		+125		
Storage humidity	No condensation	5		95	%RH	
Pin soldering temperature	Wave soldering: maximum 10 seconds			+260		
resistance	Manual soldering: solder points 1.5mm away from the casing, 10 seconds			+300	°C	
Pollution level		Level 3				
Vibration	10-150Hz,5g,0.75mm,90 Min.along X,Y and Z					
Switching frequency	Rated input voltage, full load		270		kHz	
Altitude	Altitude: ≤ 2000m, Atmospheric pressure: 80 - 110 KPa					
Mean Time Between Failures	MIL-HDBK-217F@25°C	500			k hours	

Mechanical Specifications

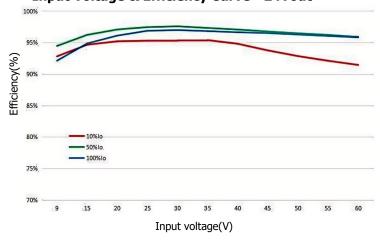
Case Material	Aluminum alloy	
Dimension	60.80×25.00×12.70 mm	
Weight	53g(Typ.)	
Cooling Method	Natural air cooling, forced air cooling, water cooling	

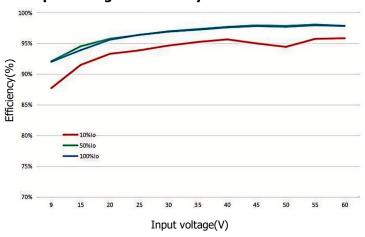
Electromagnetic Compatibility (EMC)

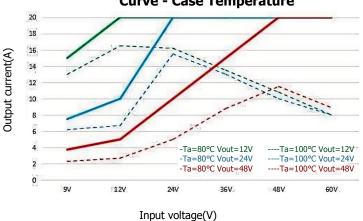

EMI	CE	CISPR32/EN55032 CLASS A(see Fig. 9 for reco	CISPR32/EN55032 CLASS A(see Fig. 9 for recommended circuit)			
EMI	RE CISPR32/EN55032 CLASS A(see Fig. 9 for recommended circuit)					
	ESD	IEC/EN61000-4-2 Contact±6kV	perf.Criteria B			
	RS	IEC/EN61000-4-3 10V/m	perf.Criteria A			
EMS	EFT	IEC/EN61000-4-4 ±2kV(see Fig. 9 for recomm	nended circuit)	perf.Criteria B		
	Surge	IEC/EN61000-4-5 line to line±2kV(see Fig. 9 for	or recommended circuit)	perf.Criteria B		
	CS	IEC/EN61000-4-6 10Vr.m.s	perf.Criteria A			

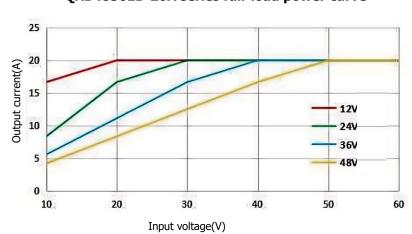

Series

Typical Characteristic Curve

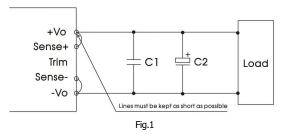

QAB4836EB-20A series efficiency curve


Input Voltage & Efficiency Curve - 12Vout

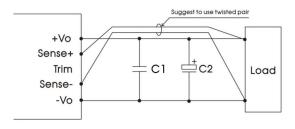

Input Voltage & Efficiency Curve - 24Vout


Input Voltage & Efficiency Curve - 48Vout

QAB4836EB-20A Series Temperature Reduction Curve - Case Temperature


QAB4836EB-20A series full-load power curve

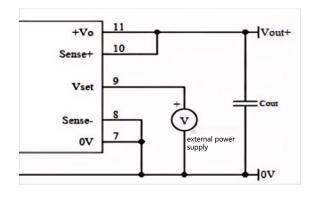
Remote Sense Application


1. Remote Sense Connection if not used

Notes:

- (1) When no remote compensation is used, ensure that +Vo is short-circuited to Sense+, and 0V is short-circuited to Sense-.
- ② The connection lines between +Vo and Sense+, and between 0V and Sense- should be as short as possible and placed as close to the terminals as possible. Avoid forming a large loop area. When noise enters this loop, it may cause instability of the cross-block.

2. Remote Sense Connection used for Compensation


Notes:

- (1) When using remote compensation, the output voltage range of 0-60VDC must not be exceeded;
- ② If the lead for remote compensation is too long, it may cause unstable output voltage. If a longer remote compensation lead must be used, please contact our technical staff;
- ③ If using remote compensation, use twisted pair or shielded wire, and keep the lead as short as possible;
- (4) Between the power module and the load, use wide PCB leads or thick wires, and ensure that the voltage drop of the line is less than 0.3V to maintain the output voltage within the specified range of the power module;
- (5) The impedance of the lead may cause output voltage oscillation or large ripple. Please make sufficient assessment before using.

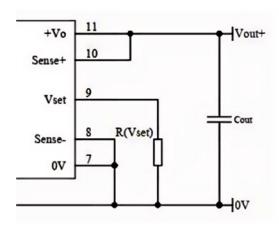
Design for adjusting output voltage Vo using the Vset pin and precautions

The impedance between the control pin Vset and the Sense- pin enables the output voltage to be adjusted within the range of 0-60Vdc. The output voltage can be adjusted either by using a regulating resistor or an external power supply driver.

1. When adjusting using the Vset pin with an external power supply:

External power supply driven, wiring method as shown in the left figure 2, Vset voltage calculation formula:

$$Vvset(Vset) = 2.366 - 2.316 \left(\frac{Vset}{Vmax} \right) V$$


Notes:

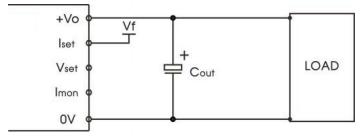
- 1. Vset is the expected output voltage, adjustable range: 0 60V;
- 2. Vmax is 60V
- 3. External power supply value range: 0V 2.5V
- 4. Vset pin must not be left floating.

2. When the Vset pin is connected to an external resistor for adjustment:

External adjustment resistor R(Vse), wiring method as shown in the left figure 3, calculation formula for R(Vset) resistor:

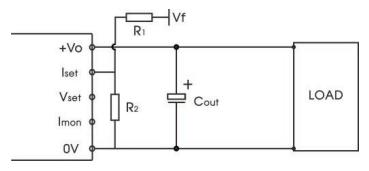
Rvset(Vset) =
$$\left[\left(\frac{11830 \times Vmax}{Vset + 0.058 \times Vmax} \right) -10912 \right] (\Omega)$$

Note:


- 1. Vo represents the expected output voltage, with an adjustable range of 0 60V;
- 2. R(Vsef) is measured in $K\Omega$;
- 3. Vmax is 60V.

Vo/V	3.3	5	12	15	20	24	36	48	60
Rvse+/KQ	93.78	72.79	34.94	27.50	19.32	14.92	7.07	2.88	0.27

Design for output voltage Io regulation using the Iset pin and precautions


The module contains an output overcurrent protection circuit. The impedance between the control pin Iset and 0V allows the output current to be adjusted within the range of 0-20A. The output current can be adjusted using either a regulating resistor or an external power supply driver. When the Iset pin is left floating, its voltage is 2.5V. At this point, the default overcurrent point is 110% * 20A.

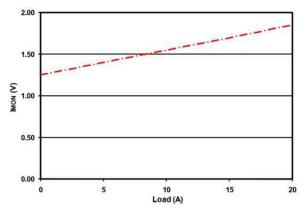
1. When the Iset pin is connected to the external voltage V+ for adjustment:

Output current regulation calculation formula:

- 1. The output current range of Iset is 0 20A;
- 2. Imax is 20A.
- 3. The external voltage range is 0V 2.5V. The Vf voltage is relative to the output pin 0V.
- 2. When adjusting the lset pin by connecting an external resistor:

Output current adjustment calculation formula:

$$RIset(Iset) = \left[\left(\frac{0.0469 \text{ Imax} + Iset}{1.153 \text{ Imax} - Iset} \right) *10200 -10 \right] (\Omega)$$


Notes:

- 1. The output current range of LSET is from 0 to 20A;
- 2. Imax is 20A.

lo/A	1	2	5	10	15	20
Rvset/KΩ	0.89	1.41	3.34	8.53	20.16	69.78

The Output Current Detection Imon

Calculation formula of the Imon pin voltage and output current:

$$V_{Imon} = 0.03I_0 + 1.25$$

Notes:

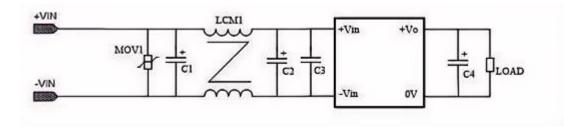
- 1. VImon is the Imon pin voltage, in V. The VImon voltage is referenced to output OV.
- 2. Io is the output current, in A.

Design Reference

1. Typical application

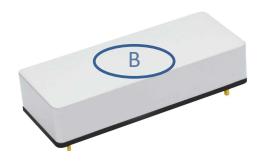
- (1) During testing and application, please follow the recommended test circuit (Figure 8); Be sure to connect an electrolytic capacitor Cin (≥1000µF) at the input to suppress the surge voltage that may be generated at the input terminal.
- (2) If the input terminal of the product is connected in parallel with a circuit with large transient energy (such as a parallel motor drive circuit), it may cause the input voltage of the product to be pulled down. Please pay attention to the fluctuation of the input voltage of the product, and it is recommended to increase the electrolytic capacitor at the input terminal appropriately. The capacitance value of Cin is to ensure the stability of the input terminal voltage and avoid the situation that the input voltage is lower than the undervoltage protection point and the product restarts repeatedly.
- (3) If the output terminal of the product is an inductive load (such as a relay, a motor), it is recommended to increase the value of the output capacitor Cout and add a TVS to filter out the voltage spikes.
- (4) Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance).

Fig	ı.	6


FUSE	Cin	Cout	TVS
30A, slow	1000μF/100V		Select according to the output voltage

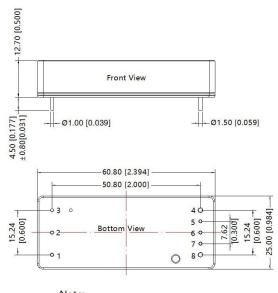
Note:

①Please pay attention to the ambient temperature of the product when using an external capacitor, increase the electrolytic capacitor values to at least 2 times the original parameter if the ambient temperature is low.

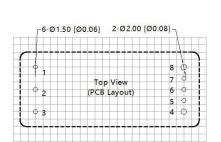

2. EMC solution-recommended circuit

Components	Recommended Component Value
MOV	101K
C1、C2	1000µF/100V electrolytic capacitor
C4	100μF/63V electrolytic capacitor
C3	4.7uF/100V
LCM1	90uH

- 3. The products do not support parallel connection of their output
- 4. Thermal Testing Recommendation Scheme


During the application process, the thermal design of the product can be evaluated by combining the temperature reduction curve of the product; or the stable working range of the product can be determined by the temperature at point B in the following test diagram. When the temperature at point B is lower than 100°C, it is the stable working range of the product.

QAB4836EB-20A-CG Dimensions and Recommended Layout

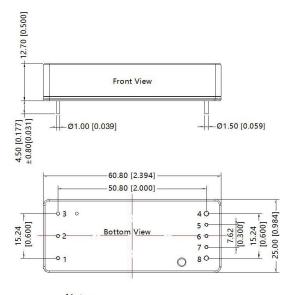


Note:

Unit: mm[inch]

Pin1,2,3,5,6,7 diameter: 1.00[0.039] Pin4,8 diameter: 1.50[0.059]

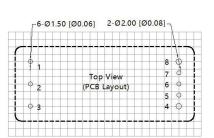
Pin diameter tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$



THIRD ANGLE PROJECTION 🕀 🗇

Note: Grid 2.54*2.54mm

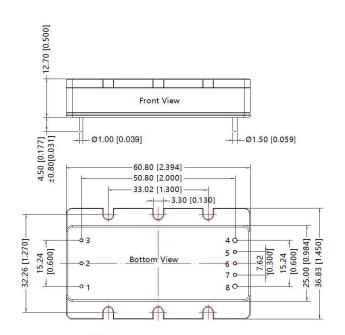
Pin-Out						
Pin	Mark	Pin	Mark			
1	+Vin	5	Iset			
2	Ctrl	6	Vset			
3	-Vin	7	Imon			
4	0V	8	+Vo			


QAB4836EB-20A-SG Dimensions and Recommended Layout

Note: Unit: mm[inch]

Pin1,2,3,5,6,7 diameter: 1.00[0.039] Pin4,8 diameter: 1.50[0.059]

Pin diameter tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$


THIRD ANGLE PROJECTION 💮 🧲

Note: Grid 2.54*2.54mm

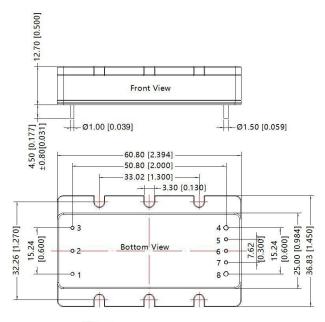
Pin-Out						
Pin	Mark	Pin	Mark			
1	+Vin	5	Sense-			
2	Ctrl	6	Vset			
3	-Vin	7	Sense+			
4	0V	8	+Vo			

QAB4836EB-20A-SFG Dimensions and Recommended Layout

Note:

Unit: mm[inch]

Pin1,2,3,5,6,7 diameter: 1.00[0.039] Pin4,8 diameter: 1.50[0.059]

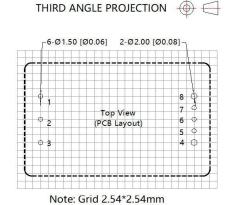

Pin diameter tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$

-6-Ø1.5	0 [Ø0.06] 2-Ø2.00 [Ø	0.08] –
		8 \$
	Top View	7 8
⁰ 2	(PCB Layout)	6 0
		5 0
Ф 3		4 0

Note: Grid 2.54*2.54mm

Pin-Out						
Pin	Mark	Pin	Mark			
1	+Vin	5	Sense-			
2	Ctrl	6	Vset			
3	-Vin	7	Sense+			
4	0V	8	+Vo			

QAB4836EB-20A-CFG Dimensions and Recommended Layout



Note:

Unit: mm[inch]

Pin1,2,3,5,6,7 diameter: 1.00[0.039] Pin4,8 diameter: 1.50[0.059]

Pin diameter tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$

Pin-Out Pin Mark Pin Mark 1 +Vin 5 Iset 2 Ctrl 6 Vset 3 7 -Vin Imon 4 0V 8 +Vo

Series

Note:

- 1. If the product works under the minimum required load, it cannot guarantee that the performance of the product complies with all the performance indicators in this manual;
- 2. The maximum capacitive load is tested under the input voltage range and full load condition;
- 3. Unless otherwise stated, all indexes in this manual are measured at Ta=25°C, humidity <75%RH, nominal input voltage and rated output load;
- 4. All index testing methods in this manual are based on the enterprise standards of the company;
- 5. Our company can provide product customization, specific needs can directly contact our technical staff;